Mitochondrial drug delivery and mitochondrial disease therapy--an approach to liposome-based delivery targeted to mitochondria.
نویسندگان
چکیده
Recent progress in genetics and molecular biology has provided useful information regarding the molecular mechanisms associated with the mitochondrial diseases. Genetic approaches were initiated in the late 1980s to clarify the gene responsible for various mitochondrial diseases, and information concerning genetic mutations is currently used in the diagnosis of mitochondrial diseases. Moreover, it was also revealed that mitochondria play a central role in apoptosis, or programmed cell death, which is closely related to the loss of physiological functions of tissues. Therefore, drug therapies targeted to the mitochondria would be highly desirable. In spite of the huge amount of mechanism-based studies of mitochondrial diseases, effective therapies have not yet been established mainly because of the lack of an adequate delivery system. To date, numerous investigators have attempted to establish a mitochondrial drug delivery system. However, many problems remain to be overcome before a clinical application can be achieved. To fulfill a drug delivery targeted to mitochondria, we first need to establish a method to encapsulate various drugs, proteins, peptides, and genes into a drug carrier depending on their physical characteristics. Second, we need to target it to a specific cell. Finally, multi-processes of intracellular trafficking should be sophisticatedly regulated so as to release a drug carrier from the endosome to the cytosol, and thereafter to deliver to the mitochondria. In this review, we describe the current state of the development of mitochondrial drug delivery systems, and discuss the advantage and disadvantage of each system. Our current efforts to develop an efficient method for the packaging of macromolecules and regulating intracellular trafficking are also summarized. Furthermore, novel concept of "Regulation of intramitochondrial trafficking" is proposed herein as a future challenge to the development of a mitochondrial drug delivery system.
منابع مشابه
Mitochondrial drug delivery systems for macromolecule and their therapeutic application to mitochondrial diseases.
Mitochondrial dysfunction has been implicated in a variety of human disorders--the so-called mitochondrial diseases. Therefore, the organelle is a promising therapeutic drug target. In this review, we describe the key role of mitochondria in living cells, a number of mitochondrial drug delivery systems and mitochondria-targeted therapeutic strategies. In particular, we discuss mitochondrial del...
متن کامل[Targeting mitochondria: innovation from mitochondrial drug delivery system (DDS) to mitochondrial medicine].
Mitochondrial dysfunction has been implicated in a variety of human diseases, including cancer and neurodegenerative disorders. Effective medical therapies for such diseases will ultimately require the targeted delivery of therapeutic agents to mitochondria. This will likely be achieved through innovations in the areas of the nanotechnology of intracellular trafficking. Mitochondrial delivery s...
متن کامل[Development of the MITO-porter, a nano device for mitochondrial drug delivery via membrane fusion].
Many human diseases have been reported to be associated with mitochondrial dysfunction. Therefore, mitochondrial therapy would be expected to be useful and productive in the treatment of various diseases. To achieve such an innovative therapy, it will be necessary to deliver therapeutic agents into mitochondria. However, only a limited number of methods are available for accomplishing this. We ...
متن کاملDual function MITO-Porter, a nano carrier integrating both efficient cytoplasmic delivery and mitochondrial macromolecule delivery.
Mitochondrial dysfunction is associated with a variety of human diseases including inherited mitochondrial diseases, neurodegenerative disorders, diabetes mellitus, and cancer. Effective medical therapies for mitochondrial diseases will ultimately require an optimal drug delivery system, which will likely be achieved through innovations in the nanotechnology of intracellular trafficking. To ach...
متن کاملMitochondrial Toxicity of Depleted Uranium: Protection by Beta-Glucan
Considerable evidence suggests that mitochondrial dysfunction contributes to the toxicity of uranyl acetate (UA), a soluble salt of depleted uranium (DU). We examined the ability of the two antioxidants, beta-glucan and butylated hydroxyl toluene (BHT), to prevent UA-induced mitochondrial dysfunction using rat-isolated kidney mitochondria. Beta-glucan (150 nM) and BHT (20 nM) attenuated UA-indu...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Mitochondrion
دوره 7 1-2 شماره
صفحات -
تاریخ انتشار 2007